Our topical group focuses on artificial intelligence (AI) and machine learning (ML) for instrumentation. Some of the student research topics include
- ML for instrumentation:
- detector modeling for optimization and design
- detector simulation
- detector calibration
- particle identification
- low-level tracking
- high-level detector combination
- strategies for noise suppression
- identification of under-performing detector elements
- Specialized instrumentation for ML:
- ML on FPGAs/ASICs for trigger/on-detector
Simulating calorimeter showers using generative adversarial networks
Deploying submicrosecond neural networks for identifying particles
University Mentors:
- Jianming Bian (UC Irvine)
- Javier Duarte (UC San Diego)
- Robin Erbacher (UC Davis)
- Harvey B. Newman (Caltech)
- Mario Spiropulu (Caltech)
- Daniel Whiteson (UC Irvine)
Laboratory Mentors:
- Michael Kagan (SLAC)
- Maria Elena Monzani (SLAC)
- Benjamin Nachman (LBNL)
- Ariel Schwartzman (SLAC)