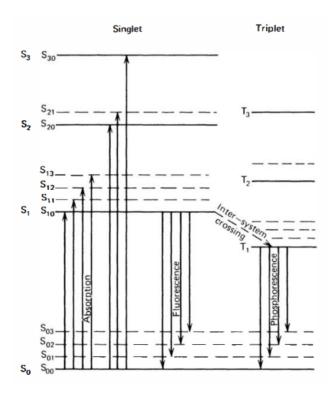
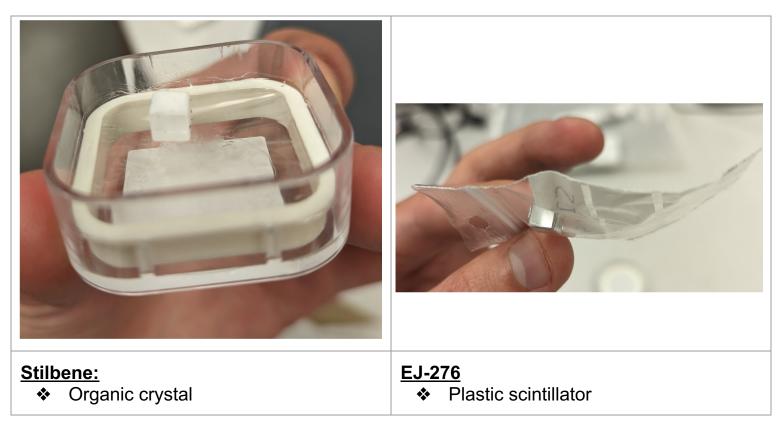

PSD With SiPMs and Organic Scintillators

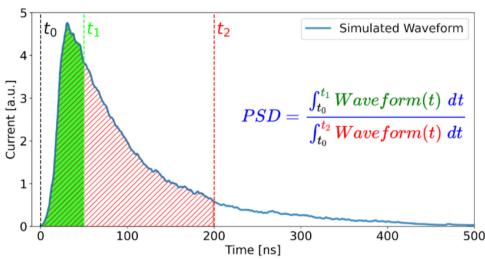
James Kingston (Slides made by Jianyang Qi) University of California, Davis 8/19/2024

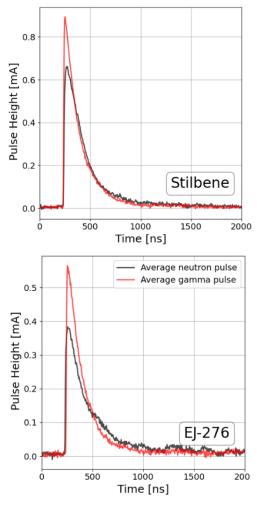

Scintillators in general

- Converts energy into light
 - Done by excitation of material
 - Fluorescence: prompt emission
 - Phosphorescence: emission of longer wavelength (compared with fluorescence)
 - Delayed fluorescence: same wavelength as fluorescence, but emittec Absorption or later
- Must be transparent to its own emitted light


Organic Scintillators

- Emits light from excited molecular states
- Singlets and triplets:
 - Singlet: spin 0, contributes most of the light
 - Triplet: spin 1, long lifetime, some excited singlets transition to triplets
- Two components to waveform:
 - Fast: prompt, singlet decay
 - Slow: delayed, related to transitions into the triplet


Credit: Knoll, Radiation Detection and Measurement


Types of scintillators in this lab

Pulse Shape Discrimination

- Different particle interactions create different ratios of the fast and slow component
 - Used to discriminate gammas from neutrons!
- PSD parameter: Q-ratio

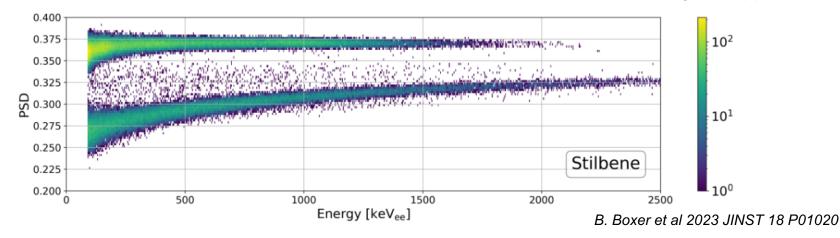

B. Boxer et al 2023 JINST 18 P01020

Figure of Merit

How well separated are the gamma and neutron populations?

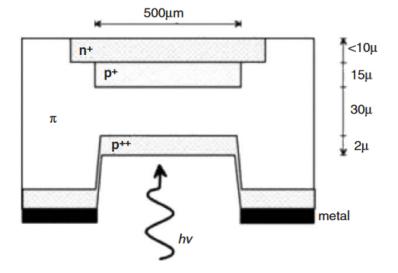
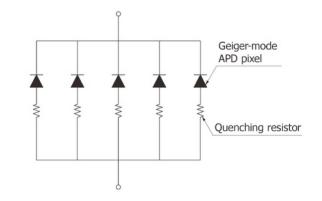
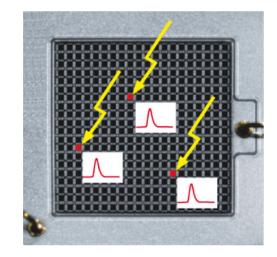

FOM =
$$\frac{\mu_{\gamma} - \mu_n}{2.355 (\sigma_{\gamma} + \sigma_n)}$$
.

Figure of Merit									
210	1.406	1.542	1.528	1.513	1.455	1.418	1.364		- 2.0
190	1.467	1.618	1.599	1.572	1.522	1.475	1.417		2.0
s] 170	1.566	1.665	1.678	1.598	1.581	1.523	1.478		1.9
Partial Integration Winodw [ns]	1.638	1.737	1.744	1.674	1.659	1.577	1.541		1.8
on Win	1.708	1.807	1.824		1.676	1.681	1.594		Σ
tegrati	1.775	1.888	1.873	1.818	1.722	1.682	1.651		1.7 U
artial In 90	1.825	1.942	1.936	1.938	1.895	1.783	1.724		1.6
70 PG	1.849	1.988	2.039	2.040	1.941	1.860	1.795		
50	1.873	2.015	2.058	2.068	2.005	1.953	1.900		-1.5
30	1.694	1.859	1.976	1.989	1.974	1.952	1.896		1.4
300 500 700 900 1100 1300 1500 Total Integration Window [ns]									

Avalanche photodiodes (APD)


- Light creates electron-hole pair in π region
- Electron drifts to region of high field
- Avalanche:
 - One electron gains enough energy (via the field) to create more e-h pairs
 - ➢ Which creates more e-h pairs...


Credit: Renker, NIM-A 67 (2006) 48-56

Single photon detection: SiPMs

- ♦ High enough voltage (breakdown) ⇒ avalanche without limit
- Avalanching without limit ⇒ no longer sensitive to initial amount of e-h pairs
- Called "Geiger-mode", just counts photons
- SiPM: Array of Geiger-mode APDs
 - Each APD is small, probability that 2 photons hit a single APD is small
 - Multiple photon hits are added up

KAPDC0029EA

Lab Setup: The House

- Dark box houses SiPM and scintillator
- ¹³⁷Cs sealed source placed to see some events
 - Neutrons will be taken over the weekend

Lab Setup: The SiPM and Readout Board

- SiPM is the black square
- SOUT: Signal out, area is proportional to energy
- FOUT: Fast signal, used for trigger
- SiPM biased to 29 V (~3 V overvoltage)
- Scintillator is placed on SiPM with optical grease

Lab Setup: Data Taking

- 10-bit desktop digitizer
- Used to take data from SOUT and FOUT
- Python script + Jupyter notebook used to do analysis
 - Make those PSD plots shown earlier!

