Liquid Argon Scintillation

1

Min Zhong, Jianyang Qi Adapted: Noah Hood HEPCAT Summer School, 2024

How do we detect interactions?

Why noble liquids?

- Detects light and charge (at an applied E field)
 - Light + charge gives depth of interaction (time projection chamber)
- Particle identification
 - Charge to light ratio in liquid xenon
 - Pulse-shape discrimination in liquid argon
- Scalable
 - Several tons of liquid xenon (LZ, XENONnT, PandaX-4T)
 - Several kilotons of liquid argon (Darkside-20k)

Credit: XENON Collaboration

Liquid argon scintillation mechanism

- Deposited energy does two things
 - Excitation: Forms Ar₂^{*} excimer
 - ➢ Ionization: Forms Ar₂⁺ molecule
 - > If no E field: electrons recombine
- De-excitation gives off light
 - ➤ ~128 nm VUV
 - Often needs wavelength shifters to detect
 - ➢ New SiPMs are sensitive to LAr light

Source: V Boccone, ArDM Collaboration. DOI 10.1088/1742-6596/160/1/012032

Pulse-shape discrimination

- Two states: singlet and triplet
 - Singlet decay: 6-7 ns
 - ➤ Triplet decay: ~1.6 µs
 - Different particles produce different singlet to triplet ratios
 - Can be used to distinguish between nuclear and electronic recoils
- Pulse shape discrimination parameter: $\frac{\int_{0}^{t_{1}} P(t)dt}{\int_{0}^{\infty} P(t)dt}$

Average waveforms for neutrons and gammas Source: Ettore Segreto, Phys. Rev. D 103, 043001

Light Detection with VUV-Sensitive Silicon Photomultipliers (SiPMs)

- Liquid argon is cold ⇒ can see single photons!
- Which SiPM will be used?
 - Hamamatsu S13370 SiPM
 - ~15% PDE at Ar scintillation light
 wavelength (~128 nm)
- SiPM dark count:

$$R_{DN}(\Delta V,T) = A(V-V_0)igg(rac{T}{298}igg)^{3/2} e^{-(E/2kT-E/2k\cdot 298)}$$

SiPM dark count with temperature

Liquid Argon Module

- ✤ A bare-minimum setup for scintillation light detection with liquid argon
 - SiPM to detect the ~128 nm scintillation photons
 - High-purity gas argon
 - Vacuum environment
 - ➤ (Impure) liquid argon to condense the gas argon
 - > A temperature sensor to ensure the gas argon is cooled

Main tasks

- Experiment setup
- Data acquisition
- Data analysis

Module Setup

✤ SiPM

- Located at the bottom of the chamber \succ
- Bias voltage needed \succ
- Readout and get amplified \succ

Vacuum *

Pump connected through the vacuum port \succ

* Gas

- High-purity gas argon, with regulator \succ
- Fill the chamber through the GAr port \blacktriangleright

Cryogenic *

- LAr bath to condense the gas argon \succ
- PT100 sensor to monitor the temperature above the SiPM \succ

SiPM Setup

Vacuum, Gas and Cryogenics

Temperature Monitoring

What will be Explored

- Experiments
 - Simple gas system and cryogenics
 - Observe SiPM signals with oscilloscope
 - Data taking
- ✤ Analysis
 - ➢ Area spectrum
 - Pulse shape discrimination

