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I. 4D tracking and LGAD technology
II. Radiation resistant LGAD design
III. High granularity LGADs
IV. LGAD applications in HEP and NP
V. X-ray detection with LGADs and 

other applications



I. LGAD technology
Time resolution challenge
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4D tracking - concept

 Collection of hits for multiple tracks in dense environment
 Harder to reconstruct tracks with usual algorithms

 But if particles have different initial position (vertex) or 
delayed in time (from pileup)
 We can exploit the time of the single hits

 Easier to reconstruct single tracks
 ~ps ~mm at speed of light, 1100ps is the needed time 

resolution for usual collider beam spot size

?

?

 Efficient tracking in dense environment
 Pile-up suppression
 Long Lived Particle detection
 Appearing/Disappearing tracks identification
 ToF-based particle identification
 Jet flavor tagging enhancement
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t4

t3

Hits

Reports on Progress in Physics (2017), [1704.08666]

https://arxiv.org/abs/1704.08666


Time precision sensors
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 Which technology has sufficient time resolution for 4D 
tracking?

 SiPM (Silicon photomultiplier) 
 But very little radiation hardness

 HV CMOS detector
 Embedded amplification in the design, ~50-100 ps of time resolution

 3D silicon sensors
 Perpendicular charge collection, ~20-30ps of time resolution, 

limitation due to dead areas and non-homogeneous field

 Low Gain Avalanche Detectors (LGADs)  see next!
 Intrinsic gain, thin bulk, ~ 20-30ps of time resolution

 In the future: LGAD CMOS? New materials (diamond)?



Low Gain Avalanche Detectors
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 LGAD: silicon detector with a thin (<5 μm) and highly doped 
(~1016 P++) multiplication layer
 High electric field in the multiplication layer
 Field is high enough for electron multiplication but not hole 

multiplication
 LGADs have intrinsic modest internal gain (10-50)

 Gain = 𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
𝑄𝑄𝑃𝑃𝑃𝑃𝑃𝑃

(collected charge of LGAD vs same size PiN)

 Not in avalanche mode  controlled tunable gain with applied bias 
voltage

 Great hit time resolution: <20 ps!

 Several producers of experimental LGADs
 CNM (Spain), HPK (Japan), FBK (Italy), BNL (USA), NDL (China)

Nucl. Instrum. Meth. A765 (2014) 12 – 16.
Nucl. Instrum. Meth. A831 (2016) 18–23.

https://inspirehep.net/literature/1593161
https://inspirehep.net/literature/1481292
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 Collected charge from a MiP is proportional to sensor thickness: a standard silicon detector 
needs to be a few 100s um thick to get a decent S/N

 Thanks to gain LGADs can be thinner, with a shorter pulse with better S/N



Time resolution
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Sensor time resolution main terms

 Time walk: 
 Minimized by correcting the time of arrival using pulse 

width or pulse height (e.g., use 50% of the pulse as ToF)

 Jitter: from electronics
 Proportional to �1 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 Reduced by increasing S/N ratio with gain

 TDC term: from digitization clock (electronics)
 Landau term: proportional to silicon sensor 

thickness
 Reduced for thinner sensors
 Dominant term at high gain

 Bottom line: thin detectors with high S/N

Landau variations



Time resolution vs thickness
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50um  ~40ps
30um  ~30ps
20um  ~20ps

50um  ~500ps
30um  ~300ps
20um  ~250ps

HPK AC-LGAD 20 um HPK AC-LGAD 30 um 

HPK AC-LGAD 50 um 

HPK AC-LGAD 20 um HPK AC-LGAD 30 um 

HPK AC-LGAD 50 um 

Data by: J. Ding

 When sensor has high gain there’s very low jitter 
contribution to the time resolution, ultimately driven by 
Landau component  Depends on sensor thickness
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LGADs limitations

Structure to avoid high field line concentration at the edges

 Radiation hardness:
 LGADs work well up to a few 

10e15Neq, then lose all gain

 Granularity:
 Protection structures limit the current 

granularity of LGADs to the mm

 Time resolution:
 LGADs can push to 20ps, but reaching 

10ps or even 15ps is very challenging

 But intensive R&D is ongoing!
 Some are also a challenge for the 

readout electronics



II. Radiation resistant LGAD design
Radiation hardness challenge
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LGAD and radiation damage
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 LGADs while operating in high energy physics experiments will sustain 
radiation damage 
 Both in terms of fluence and ionization dose

 Change in performance caused by reduced doping concentration in the 
gain layer by acceptor removal mechanism
 Some details: https://doi.org/10.1016/j.nima.2018.11.121

Performance effects of radiation damage (E.g. on 50um sensor)
 Partly the performance can be recovered by increasing the bias Voltage 

applied to the diode (~200V  ~700V)
 Reduction of gain and collected charge

 Charge collected up to 30fC (Gain ~50) before irradiation to 1fC (gain 2-3) 
after a fluence of 6E15 Neq/cm2 

 (Neq: equivalent 1 MeV neutrons on cm2)
 Increased time resolution

 Time res. of 25ps to 60ps after a fluence of 6E15 Neq/cm2

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR

https://doi.org/10.1016/j.nima.2018.11.121
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/LArHGTDPublicPlots#2018_2019_Sensor_Performance_TDR


Radiation hard LGAD design
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Radiation hardness of LGADs can be increased by:
 Thin but highly doped gain layer
 Addition of Carbon

 Carbon is electrically inactive (no effect pre-
irradiation), catches interstitials instead of Boron, 
reduces acceptor removal after irradiation

 Deeper gain layer
 High field for larger volume
 Allows for better recovery of the gain from increased 

bias voltage after radiation damage
 The combination of all techniques (by FBK) 

allowed to produce a sensor with gain ~20 
at 2.5E15 Neq

 Resources
 https://iopscience.iop.org/article/10.1088/1742-6596/2374/1/012173/meta
 https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10003
 https://www.sciencedirect.com/science/article/pii/S0168900218317741 
 https://doi.org/10.1088/1748-0221/15/04/T04008
 https://doi.org/10.1016/j.nima.2018.08.040

With Carbon

Without Carbon

Deeper gain layer (triangles)
Less deep gain layer (circles)
(same color, same fluence)

https://iopscience.iop.org/article/10.1088/1742-6596/2374/1/012173/meta
https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10003
https://www.sciencedirect.com/science/article/pii/S0168900218317741
https://doi.org/10.1088/1748-0221/15/04/T04008
https://doi.org/10.1016/j.nima.2018.08.040


FBK LGAD performance at maximum irradiation

14

 FBK UFSD3.2 sensors show the great 
potential of deep gain layer and 
Carbon implantation

 FBK3noC (no carbon) has the worse 
performance

 FBK3+C and FBK UFSD3.2 (same structure 
with Carbon) have much better performance

 FBK UFSD3.2 W14 with deep gain layer is 
similar to FBK3+C but has thinner bulk
 lower initial charge, but better time resolution

 FBK UFSD3.2 W19 (highly doped, deep gain 
layer, optimized Carbon) best performance
 W19 has a higher starting point in gain 

layer doping to increase the radiation 
reach
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Add Carbon

Thinner bulk, 
deep gain layer

Thinner bulk, deep gain layer
Optimized carbon level
Increased doping concentration

Same type

https://indico.cern.ch/event/983068/contributions/4223171/attachments/2191347/3703735/020221_TREDI_LGAD_radhard.pdf
https://indico.cern.ch/event/983068/contributions/4223173/attachments/2191413/3703863/17022021_MarcoFerrero.pdf
https://indico.cern.ch/event/983068/contributions/4223215/attachments/2192222/3705404/Siviero_TREDI2021.pdf

https://indico.cern.ch/event/983068/contributions/4223171/attachments/2191347/3703735/020221_TREDI_LGAD_radhard.pdf
https://indico.cern.ch/event/983068/contributions/4223173/attachments/2191413/3703863/17022021_MarcoFerrero.pdf
https://indico.cern.ch/event/983068/contributions/4223215/attachments/2192222/3705404/Siviero_TREDI2021.pdf


Radiation hardness for future colliders

 New technology needs to be developed
for future colliders with high radiation 
hardness requirements (1016-17 Neq/cm2) 
and high occupancy (e.g.: FCC-hh)

 With R&D effort in ATLAS/CMS in ~6 years 
x10 improvement in radiation hardness, 
up to 2.5E15 Neq/cm2

 Need for order of magnitude increase in radiation 
hardness and higher granularity

 Many efforts are ongoing to push the 
radiation hardness of LGADs
 Rad-hard timing electronics also needs to be 

developed hand-in-hand

Radiation hard

?

Buried-LGAD

Carbon implantation
Carbon shielding

Compensated gain layer

Inactive Boron,
Low diffusion

3D trenches

LGAD CMOS

Snowmass papers: 4D tracking paper, 
CMOS, Electronics, SiC, 3D integr.

Adaptive gain layer

https://arxiv.org/abs/2203.13900
https://arxiv.org/abs/2203.07626
https://arxiv.org/abs/2204.00149
https://arxiv.org/abs/2203.08554
https://arxiv.org/abs/2203.06093


III. High granularity LGADs
Granularity challenge
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LGAD arrays structure

P

P+

N++
P++

Very high field area, induces early breakdown

Structure to avoid high field line concentration at the edges
Junction Termination Extension (JTE)
Separation between the pads of an array ~50-100 um

 Protection structures limit the 
current granularity of LGADs

 ~100 um pixel size would mean 
~50% active area

 But intensive R&D is ongoing to 
overcome this limitation
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 First LGADs relatively new (6-7 years ago)
 Many recent innovative prototypes to increase LGAD granularity

AC LGAD

Trench-Isolated LGAD Inverse LGAD Deep-Junction LGAD

Traditional LGAD

High granularity LGADs

High granularity

DS-LGAD



AC-LGADs
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 Most advanced prototype are AC coupled LGAD 
 Finer segmentation and easier implantation process

 Continuous sheets of multiplication layer and N+ layer 
 N+ layer is resistive and grounded through side connections 
 Readout pads are AC-coupled 

 Insulator layer between N+ and pads
 Prototypes produced by CNM, FBK, BNL, HPK

 The response of the sensors can 
be tuned by modifying several 
parameters
 Pad geometry and dimension
 Pad pitch
 N+ layer resistivity 
 Oxide thickness



AC-LGAD hit reconstruction
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 AC-LGAD has intrinsic charge sharing
 Gain increases the S/N and allows for smaller metal pads

 Charge sharing can be a great feature for low density 
tracking environment
 Using information from multiple pixels for hit 

reconstruction
 With a sparse pixelation of 300 um a <10 um hit 

precision can be achieved!
 Combination of time of arrivals as well

 Sparse readout is extremely useful for 
channel density and power dissipation

 Metal layout can be in any shape and size

 Technology being consider for
 The PIONEER experiment at PSI
 ePIC, future detector at Electron-ion collider (EIC) at BNL

References:
https://indico.physics.lbl.gov/event/1262/
https://indico.cern.ch/event/918298/contributions/3880516/
https://arxiv.org/abs/2006.01999

IR laser scan of the device

https://indico.physics.lbl.gov/event/1262/
https://indico.cern.ch/event/918298/contributions/3880516/
https://arxiv.org/abs/2006.01999


AC-LGAD strips studies
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 BNL strip AC-LGADs with same geometry but different lengths
 Pitch and width in three configurations (width = pitch/2)

 300-150 um, 200-100 um, 100-50 um
 0.5 cm and 1 cm long sensors

 2.5 cm long sensor with strips of 500-200 um
 Charge sharing present up to ~2mm

 Direct comparison of geometry shows that longer strips have 
increased charge sharing, also depending on strip pitch/width

 Position resolution is similar in the 4 sensors in the center 
between strips, increases under the strip
 Position resolution is << than pitch/√12!

5/13/2024

Center between
strips

Data by: A. Das, C. Bishop, N. Yoho

st
ri

p

Response of one strip, data taken with IR laser (metal strips are opaque)

Laser scan



Other high granularity LGAD technologies
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 Trench insulated LGADs (TI-LGAD)
 Pads insulated by deep trenches filled with oxide
 First prototypes successfully produced by FBK:

 https://indico.cern.ch/event/861104/contributions/4514658/

 Very good performance observed!
 IP gap 5-10 um or less

 Similar granularity as regular silicon sensors

Prototype FBK TI-LGAD

 Deep-Junction LGAD (DJ-LGAD) 
 Gain layer is buried, so the top can be segmented 

as in normal silicon detectors
 https://arxiv.org/abs/2101.00511

 First production completed by Cactus 
material in collaboration with BNL and UCSC
 Promising performance (gain of ~5) and good pad 

insulation (few um IP gap)
 Similar granularity as regular silicon sensors

DJ-LGAD signal
Bias = [300,700] V
Step = 100V

Time [ns]
C

ur
re

nt
 [m

A]

https://indico.cern.ch/event/861104/contributions/4514658/
https://arxiv.org/abs/2101.00511


Monolithic LGAD
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 All LGADs require to be ‘hybridized’ in some way with the readout chip
 Wire-bonding, bump-bonding, etc…

 Combination of HV-CMOS technology and LGAD technology
 Internal gain by LGAD-like gain layer and embedded amplification

 Many groups are working on developing such technology
 LBNL, BNL, SLAC etc…

 First issue is LGADs’ gain layer has high electric field near the surface, not 
easy to work with CMOS tech in it

 Also LGADs are mostly produced on 4’’ and 6’’ wafers, CMOS foundries 
work with 8’’ wafers and up  need 8’’ LGAD technology (not 
straightforward due to gain layer implantation)

 First successful LGAD CMOS: picoAD by UniGe group 
 https://iopscience.iop.org/article/10.1088/1748-0221/17/10/P10032
 Using a deep junction with epitaxial growth process 

https://iopscience.iop.org/article/10.1088/1748-0221/17/10/P10032


IV. LGADs application in HEP and NP
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HGTD - LHC high luminosity and ATLAS
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 LHC will be upgraded in 2027 to High Luminosity LHC
 Instantaneous luminosity will be ~3 times past run conditions

 First application of LGADs in HEP experiments at HL-LHC
 Timing layers in the end-cap (forward) region to mitigate pile-up

 ATLAS and CMS detector will be upgraded with a 
new end-cap pixel timing detector with LGADs
 High granularity timing detector (HGTD) for ATLAS https://cds.cern.ch/record/2719855
 End-cap timing layer (ETL) for CMS https://cds.cern.ch/record/2667167

 Radiation hardness was the most challenging thing for LGADs 
and was the core of the R&D made at UCSC until ~2020
 After many years of development, a device with enough gain at 

2.5E15 Neq (HGTD requirement) was produced
LGAD use case: 
reduce pileup

https://cds.cern.ch/record/2719855
https://cds.cern.ch/record/2667167


PIONEER
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 PIONEER is a next generation rare Pion decay experiment
 The goal is to improve the precision of  Re/μ and 

B(π+π0e+ν) by an order of magnitude
 Re/μ is the ratio of pion decay to electron a muon: precision 

measurement of lepton flavor universality
 B(π+π0e+ν) is the cleanest measurement of Vud: very 

important to test CKM matrix unitarity

 PIONEER will run at PSI (Switzerland), πe1 or πe5
 Phased effort: Phase I aimed at Re/μ, phase II/III aimed at Rπβ
 Growing collaboration, let me know if you’re interested!
 https://arxiv.org/abs/2203.01981

 PIONEER will feature a high granularity, time resolved 
fully silicon active target (a 5D tracker!)

Temporary logo

https://arxiv.org/abs/2203.01981


PIONEER experimental design
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 Two main detectors:
 Active TARget, ATAR with fast timing and high segmentation
 Calorimeter with high energy resolution (liquid Xe or LySO

crystals) to reduce tail correction and pile-up uncertainties, and 
improved uniformity

 Plus, a tracker in between
 Goal: Separation of deposited energy spectra of 

πeν and πμνeνν

 ATAR allows to separate and tag πeν and πμνeνν
decays using topology, energy and timing: a 5D tracker!
 Based on LGAD timing technology, measures (x, y, z, t, Energy)
 ‘Live’ tracking of pion decay to see positron and muon decay channels
 Plus, ATAR helps recognizing decay in flight events
 Exiting positrons are tracked and the total energy is measured in 

the calorimeter
 https://www.mdpi.com/2410-390X/5/4/40

This is the hard part
Tail fraction trigger

Easy: high energy trigger

Easy: low energy trigger

At some point e+ won’t 
make it to the Calo

https://www.mdpi.com/2410-390X/5/4/40


PIONEERS’s ATAR design
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 The chosen device for the ATAR is an LGADs high granularity technology 
(AC-LGADs or TI-LGADs)

 ATAR baseline design: 
 48 layers of 120um thick  2x2 cm LGADs (200um pitch)

 Short (~5 cm) readout flexes carry the un-amplified signal to the ASIC
 ASIC does analog amplification and ships the signal to back-end digitizers

 The ATAR signals will be fully digitizer in a region of interest (ROI, temporal 
or spatial) for each event

 Advanced de-convolution analysis can identify pulses close in time
 Detect and identify πeν and πμνeνν and π or μ decay in flight

Veto

Readout

Flexes

DTAR ATAR
Supports

Calo

LGAD use case: 
pattern tracking



Electron-Ion collider (https://www.bnl.gov/eic/)
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 4D tracking is one of the key point in the ePIC detector
 AC-LGAD is foreseen for both barrel and end-cap in EPIC

 500 um x 1 cm strip, ~1% X0 for barrel
 500 x 500 um pixel, 8% X0 for forward
 25 ps single hit time resolution
 ~30 μm spatial resolution

 Particle identification with time of flight (TOF)
 For e/π/K/p at low/intermediate momentum

 Require good time resolution and meaningful flight distance
 Better with 4π coverage for t0 determination
 E.g. around 30 ps at 0.5m (70ps at 1m) is required to have PID with 

momentum <0.5 GeV in the barrel

 Experiment installation in 2030

ePIC
detector

LGAD use case: 
TOF PID

https://www.bnl.gov/eic/


Far-future colliders
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Higgs 
discovery

e+e- colliders: 
Higgs factories

Next generation 
100TeV hadron 

colliders

Study the Higgs interactions
Timescale 2040s

Discover new frontiers
Timescale 2060s

FCCee, CLIC, CEPC, ILC?
Collision of elementary particles: clear signature
Precision measurements of Higgs couplings, 
di-Higgs vertex and VEV
But: limited energy reach and low discovery potential

Future hadron collider: FCChh
Collision of partons
Complex events with large pileup
Explore up to 100 TeV c.d.m.

Muon 
collider

Timescale ?



Long-term development of LGAD detectors - FCC
 Great time resolution, high granularity and low power dissipation needed
 AC-LGADs can cover the short timescale: PIONEER, ePIC, ee colliders

 E.g. IDEA: FCCee tracker that could involve a Si wrapper timing layer using AC-LGADs
 But for FCChh: High radiation hardness requirements (1016-17 Neq/cm2) and high occupancy

 Need for order of magnitude increase in radiation hardness 
 Lower power electronics needs to developed at the same time!

 Critical need to continue developing LGAD sensor technology and low-power readout for far future 
applications!

High granularity Radiation hard

? ?

DJ-LGAD

TI-LGAD

iLGAD

DS-LGAD

Buried-LGAD

Carbon implantation

Compensated gain layer

Adaptive gain layer
Inactive Boron,
Low diffusion…

3D trenches

LGAD CMOS

Snowmass papers: 4D tracking paper

AC-LGAD

https://arxiv.org/abs/2203.13900


V. X-ray detection with LGADs and more
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LGADs with X-rays - SSRL
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 LGAD tested for X-ray detection at 
the SLAC Stanford Synchrotron 
Radiation Light source (SSRL)

 X-rays of energy range [5, 70] KeV
 Definite pulses even with a 2ns beam 

separation
 Linearity and the energy resolution of 

different LGADs at different bias 
voltages
 Good linearity, best energy resolution at 

lower voltages (low gain) of <10%
 Thin PiN (no gain) device has energy 

resolution 15-20%
 Good time resolution ~100ps
 Tested with focused beam as well, 

results in progress...

DOI 10.1088/1748-0221/18/10/P10006

LGAD use case: 
Cyclotrons Why is PiN better at time resolution? 

See next slide!

https://iopscience.iop.org/article/10.1088/1748-0221/18/10/P10006


X-rays detection with LGADs
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 X-ray interactions at different absorption depth in the LGAD: simulate with TCAD Sentaurus 
 Initial “flat top” of the pulse because of charge travel to the gain layer, delaying the gain process

 Observed the same behavior in the data
 This doesn’t happen in the PiN since current is instantaneous

TCAD+spice simulation Data, averaged waveform for time of arrival slices



Timing in medical applications
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 Time-of-flight (TOF) measurement in PET scanners 
allows a more accurate image reconstruction and/or a 
lower delivered radiation dose

 TT-PET project: Time of flight PET scanner for 
small animals
 https://pos.sissa.it/contribution?id=PoS(TWEPP-17)043

 Planar PET: PetVision (easier to move, lightweight)
 https://indico.cern.ch/event/1255624/contributions/5445368/

 Necessary a timing precision of ps
 One way to do it: LGADs (although not mentioned in this 

applications)

LGAD use case: 
time of flight PET

https://pos.sissa.it/contribution?id=PoS(TWEPP-17)043
https://indico.cern.ch/event/1255624/contributions/5445368/


LGAD space applications

10/12/2018Dr. Simone M. Mazza - University of California Santa Cruz36

 Many space experiments (FERMI, DAMPE, AMS) use a standard silicon tracker to detect 
cosmic rays outside of the hearth atmosphere

 The choice of silicon tracking sensors with a hit time resolution of about 100 ps can solve
 Back-scattered particles from the calorimeter
 Differentiate electrons and hadrons
 ToF measurement for particle direction (charge measurement in a magnetic field)

 Perfect application for LGADs! https://inspirehep.net/literature/2145697

LGADs use 
case: timing 

in space

https://inspirehep.net/literature/2145697
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Conclusions
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 LGADs are an interesting “new” (<10y) technology
 Fast pulses (~1ns), internal gain of 20-50, exceptional time resolution

 Radiation hardness proven up to few 1E15 Neq
 Push to reach 1E16 Neq and beyond for future colliders

 New technologies will allow dense LGAD pixelation
 TI-LGADs, iLGADs, AC-LGADs, DJ-LGADs
 Maintain fast pulses (~1ns), internal gain of 20-50 and exceptional 

time resolution of LGADs but allow dense LGAD pixelation

 Future LGAD applications in many fields
 High energy physics (ATLAS/CMS)
 Nuclear physics (ePIC, PIONEER)
 Future colliders
 Low energy X-ray detection
 Fast beam monitoring … Medical science (TOF PET) … space …
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Radiation damage model
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 Radiation damage for LGADs can be parameterized
 𝑁𝑁𝐴𝐴(𝜙𝜙) = 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙 + 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐

 Acceptor creation: 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙
 By creation of deep traps

 Initial acceptor removal mechanism: 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐
 Reduction of doping concentration in the multiplication 

layer  reduction of gain
 C-factor (acceptor removal constant) depending 

on detector type

Multiplication layer

Bulk

Y. Zhao et al. 10.1016/j.nima.2018.08.040

𝑁𝑁𝐴𝐴(𝜙𝜙) = 𝑔𝑔𝑒𝑒𝑒𝑒𝑒𝑒𝜙𝜙 + 𝑁𝑁𝐴𝐴(𝜙𝜙=0)𝑒𝑒−𝑐𝑐𝑐𝑐



AC-LGAD strips
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 Testing of AC-LGAD prototype strip sensors (50 um 
thick) with several geometries
 Sensors produced at BNL for the EIC

 Same strip length and width, different pitches
 Finer strips show a slightly better resolution, but higher 

channel count
 Hit position resolution in direction perpendicular to the 

strip 5-15 um
 Study made with FNAL TB data

 Same geometry but with different lengths (study made 
with focused IR laser TCT)
 Sensors with longer strips show increased charge sharing 

profile
 Effect to be understood with simulation

 For PIONEER 2 cm long strips with substrate 
thickness of 120um
 Best behavior: charge shared only between two strips to 

have largest S/N
 TCAD Simulation to study the charge sharing

Position resolution vs position
for AC-LGAD strips of different pitch

Position resolution 5-15um
Across the sensor

Strip[



Alpha particle
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 Gain suppression studied with alpha particles
 Deposition of ~100 MiP
 Studied in a vacuum chamber to reduce energy spread

 High gain suppression observed for high gain sensor
 Several types of gain layer design under study

 The effect is expected to change with angle of 
incidence
 What matters is the local charge concentration in the 

gain layer, so the “projection” of the track to the gain 
layer

 Compare the suppression with alpha 
particles with simulation

Gain suppression observed with alpha particles

Courtesy of  M. Nizam

Suppression



Very thin LGAD sensors future uses
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 Very thin 20 um prototype LGAD
 Possible improvements down to 15ps of time resolution
 Compared with 50um sensors (30-35 ps reach) and 30um sensors (25ps reach)

 https://arxiv.org/abs/2006.04241
 However, new productions of 20 um devices from BNL, HPK and FBK still at 20ps level
 Proper design is needed to surpass 20ps of resolution

 Very thin sensors are also be candidates for extreme radiation environments
 After substantial radiation damage thick detectors requires 1000s of V for depletion (Even 

though there is evidence of Charge trapping saturation)
 But a 50um sensor at 1E17Neq is fully depleted at 500V
 Gain helps in having sufficient collected charge
 Can be operated in extreme radiation environment
 e.g. for vertex detection very close to the beam line in colliders

 https://doi.org/10.1016/j.nima.2020.164383
 https://agenda.hep.wisc.edu/event/1391/session/12/contribution/60

G30 sensor

30um sensor, 20ps reach

20um sensor, 15ps reach

https://arxiv.org/abs/2006.04241
https://doi.org/10.1016/j.nima.2020.164383
https://agenda.hep.wisc.edu/event/1391/session/12/contribution/60


Sensor testing –probe station, charge collection
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 Probe station electrical testing
 Current of voltage (IV) and Capacitance over voltage (CV)
 CV is used to probe the doping profile of the gain layer

 Laboratory charge collection 
 Using MiP electrons from a Sr90 β-source (β-telescope)

 Signal shape, noise, collected charge, gain, time resolution
 Using Alpha source in vacuum (Am237), ~100 MIPs deposition
 Using X-ray gun

 Laser TCT studies
 IR laser mimics a MiP response and allows charge injection as a function of 

position
 Particularly useful to test arrays and AC-LGADs (see later)

 Test beam at facilities (CERN, DESY, FNAL)
 Allows the study of MiP response with position information through an external 

tracker

Min doping
Max doping
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