HEPCAT Summer School Instructions

Jianyang Qi, Min Zhong

University of California, San Diego

Introduction

Motivation and Aims

- ➤ General Idea
 - Build a photon detector using a cryogenic chamber housing a Silicon Photomultiplier (SiPM)
 - Read out liquid argon (LAr) scintillation light using the detector
- ≻ Aims
 - Get hands on experience with vacuum and cryogenic systems
 - Be familiar with noble liquid scintillators and photodetectors
 - Deal with signal readout and preliminary processing (LabView)
 - Data analysis of the amplitude/area spectra of SiPM signals

Introduction

Basic Setup

- Basic Steps
 - Build a cryogenic vacuum chamber with gas Argon (GAr) and vacuum input, install SiPM and temperature sensor inside it
 - Maintain vacuum inside the chamber and pass electronics from the inside to the outside
 - Condense GAr into liquid argon (LAr) inside the chamber
 - Read out LAr scintillation light using the detector with and without a radioactive source
 - Perform simple data analysis

System Overview

Vacuum and Cryogenic system

- ≻ Vacuum
 - All conflat (CF) or VCR components for high vacuum
- Cryogenic (LAr) system
 - Passive cooling with LAr bath
 - Small LAr volume for quick condensation process
 - SiPM for direct LAr scintillation light detection
 - RTD temperature sensor located around the SiPM to monitor the LAr level
 - No complex gas handling

System Overview

Temperature Sensor and SiPM

- Temperature Sensor
 - PT100 RTD is a resistor that changes resistance with temperature, and is used to read temperature
 - Read the temperature through Arduino
- > SiPM
 - Hamamatsu 13370
 - UV sensitive to LAr scintillation light (~ 128 nm)
 - Customized PCB board for signal readout

PT100 RTD

Arduino

Hamamatsu 13370 SiPM

Electronics and Readout

SiPM Working Principle and Signal Readout

- > Working principle
 - SiPM is a diode operated in a strong reverse bias
 - Strong field in the depletion region, which causes avalanche
 - Voltage at which this happens is called the breakdown voltage, and is when we can see light
- Signal readout
 - Charge sensitive:
 - C_d: decoupling capacitor
 - C_F, R_F : feedback capacitor and resistor
 - Signal from the SiPM is amplified and integrated
 - Linear amplifier multiplies pulse by x10

Electronics and Readout

LabVIEW Data Acquisition

- > Oscilloscope
 - Siglent SDS 1202X-E oscilloscope
 - Data acquisition from the oscilloscope through LabVIEW

> LabVIEW UI

- Plot triggered waveforms
- Baseline calculation
- Save areas, amplitudes and time info. of the signal waveforms
- Fourier transform and filter provided

Data Taking and Analysis

Data Taking

- Before taking data
 - Find the breakdown voltage at room temperature, and check the noise level
 - Find the breakdown voltage at LAr temperature and apply a ~3V over voltage
 - Over voltage = bias voltage breakdown voltage
- > Data to take
 - Set 1: Normal trigger level, without radioactive source
 - Set 2: High trigger level, without radioactive source
 - Set 3: Normal trigger level, with radioactive source
 - Set 4: High trigger level, with radioactive source

Data Taking and Analysis

Data Analysis

- Single photon analysis
 - In principle, the smallest signal we can see is single photon, and then double photon, triple photon signals ...
- LAr scintillation analysis
 - The data without the radioactive source may come from dark count or background
 - Look at pulse shapes, see if LAr triplet decays are visible
 - Place a radioactive source (662keV gamma line from Cs137)
 - Check for different rates with a high trigger
 - Check for different area spectra with a moderate trigger

Questions to Consider

- > Why is the signal much noisier at room temperature? What's the physical process behind this?
- > Why do some of the LAr signals have a long tail?
- > What is the expected shape of the area/amplitude spectrum?
- Do we expect a difference in the rate of triggers when we place a radioactive Cs137 source nearby?
 - What about the amplitude/area spectrum?
- > Why can't we see LAr scintillation light with a quartz window?
- When using a charge sensitive amplifier, does it make more sense to compute the amplitudes or the areas of the pulses?
 - What about a linear amplifier?